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Received 8 March 2006 / Received in final form 17 April 2006
Published online 15 June 2006 – c© EDP Sciences, Società Italiana di Fisica, Springer-Verlag 2006

Abstract. Explicitly correlated wave functions including a Jastrow factor to take into account the dynam-
ical correlation effects, and a multi determinant model wave function to account for the non–dynamical
correlations are used to study some metastable excited states of the negative ions Li− and Be−. A de-
tailed analysis of one– and two–body properties has been carried out for these states. In particular the
single–particle density as well as both the two–body inter electronic and center of mass densities have been
obtained. All the calculations have been performed by using the variational Monte Carlo method.

PACS. 31.10.+z Theory of electronic structure, electronic transitions, and chemical binding – 31.25.-v
Electron correlation calculations for atoms and molecules – 31.25.Jf Electron correlation calculations for
atoms and ions: excited states – 02.70.Ss Quantum Monte Carlo methods

1 Introduction

The problem of the atomic structure including correlations
has been usually tackled starting from large expansions of
the atomic wave function on Slater determinants. The use
of explicitly correlated wave functions, including explicitly
the inter-electronic coordinate, constitutes an alternative
to deal with this problem. For few electron systems, highly
accurate results have been obtained by expanding the vari-
ational wave function on large basis sets that depend on
the inter electronic distance [1,2]. However the generaliza-
tion of this kind of ansatz to more complex systems is very
complicated due to the difficulties involved in the calcu-
lation of the expectation values. These problems can be
efficiently dealt with the Variational Monte Carlo (VMC)
method, see e.g. [3]. With this method, the expectation
value of the atomic Hamiltonian between wave functions
of practically any form can be accurately computed. Start-
ing from relatively large expansions on the inter-electronic
coordinate, highly accurate energies have been recently re-
ported for four and five electron atoms and ions [4,5]. A
different option, within the VMC scheme, is the devel-
opment of compact explicitly correlated wave functions
that depend on few variational parameters and contain
the most important features of the electronic correlations
in the system under study, with a common structure of
the wave function for different atoms [6]. The accuracy
reached by using these simpler wave functions is not as
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high as in large expansions. However they lead to a very
accurate description of the system and allow for a reliable
calculation of other interesting properties. Besides they
can be used for the description of atoms with a greater
number of electrons. Therefore by using this ansatz a con-
sistent and systematic analysis of the electronic correla-
tions can be completed.

Within the problem of the electronic structure of
atomic systems, the calculation of anions is of particular
interest. For example, it is well-known that some negative
ions can exist in several bound excited states. In particu-
lar the bound states of Li− and Be− have been the focus
of much research interest. Thus, it has been found [7,8]
that the only long-lived states of the negative lithium ion
are the ground state and the core excited 1s2s2p2–5P and
1s2p3–5S ones which lie below their corresponding parent
terms 1s2s2p–4P and 1s2p2–4P of the neutral Li atom.
Both excited states correspond to the highest total spin
value. For Be− it is known that its ground configuration,
1s22s22p–2P is not stable, but it has been demonstrated
theoretically [9,10] that Be− has three metastable bound
terms 1s22s2p2–4P, 1s22p3–4S and 1s2s2p3–6S which lie
below their parent terms 1s22s2p–3P, 1s22p2–3P and
1s2s2p2–5P of the neutral atom, respectively.

These and other results are based on extensive Config-
uration Interaction or Multi Configuration Hartree Fock
calculations [11,12] that provide very accurate values of
the energy and allow for a precise determination of rela-
tivistic corrections and some other interesting properties
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such as oscillator strengths. However the knowledge of the
one and, especially, the two body densities and related
properties such as their radial moments is much more
scarce. This is due to the difficulties involved in their cal-
culation by using these wave functions. These distribution
functions give insight into the spatial arrangement of the
electrons and play a key role in the understanding of the
dynamics and structure of the atomic systems [13–16]. In
addition, these distribution functions can be used to study
some other properties such as electronic correlations, ex-
change effects, information entropy of atoms, see e.g. ref-
erences [15,17–24].

In this work we study the bound states of Li− and
Be− ions by using compact and accurate explicitly cor-
related wave functions. Both the wave function and the
densities and related properties have been obtained by us-
ing the Variational Monte Carlo method. The variational
ansatz employed here has been previously applied to study
the ground and the first excited states of the neutral and
positive ions of four [25,26] and five [27,28] electronic sys-
tems leading to a reliable description of the radial density
and some other related properties.

The wave function used in this work is written as the
product of a symmetric correlation factor, F , accounting
for the dynamic correlation effects, times a model wave
function Φ that gives some of the properties of the state
such as the spin and the angular momentum of the atom,
and it is antisymmetric in the electronic coordinates

Ψ = FΦ. (1)

For the correlation factor we use the form of Boys and
Handy [29] with the prescription proposed by Schmidt and
Moskowitz [6]. We have worked with 17 variational non-
linear parameters in the correlation factor. For the model
wave function we use a multi configuration expansion

Φ =
∑

k

Ckφk, (2)

where φk is each one of the states with the proper values
of the total spin and orbital angular momentum arising
from the configurations selected to describe the state un-
der consideration. The orbitals in φk and the initial val-
ues of the linear coefficients Ck have been fixed by using
the parameterized optimized effective potential (POEP)
method [30]. When using this model wave function with
the correlation factor proposed here, it is not necessary to
use a great number of configurations to obtain the energy
of the states studied with a relatively good precision. In
particular between one and three configurations have been
used, depending on the state considered.

Once the model wave function is built, the total trial
wave function is obtained by multiplying it by the corre-
lation factor, F . The nonlinear parameters of the corre-
lation factor, and the linear coefficients Ck of the expan-
sion of the model wave function, equation (2), are taken
as variational parameters. This constitutes a correlated
basis set expansion of the trial wave function where the
Hamiltonian is diagonalized. This step involves the solu-
tion of a generalized eigenvalue problem, with matrix ele-
ments computed by Monte Carlo, obtaining a new set of

the linear coefficients Ck. The optimization of the wave
function has been carried out by minimizing the total en-
ergy.

Starting from the best wave function, several one– and
two–body properties have been obtained. One–body prop-
erties in position space can be studied in terms of the
single particle density, ρ(r),

ρ(r) =

〈
Ψ |

∑

i

δ[r − ri]|Ψ
〉

(3)

which gives the charge distribution around the nucleus.
Two–electron properties can be studied in terms of

both the inter electronic, or intracule, I(r12), and the cen-
ter of mass, or extracule, E(R), densities [14,15] defined as

I(r12) =

〈
Ψ |

∑

i>j

δ[r12 − (ri − rj)]|Ψ
〉

(4)

E(R) =

〈
Ψ |

∑

i>j

δ[R − (ri + rj)/2]|Ψ
〉

(5)

respectively. These two distribution functions provide in-
sight into the spatial arrangement of the electronic charge.
They represent the probability density function for a pair
of electrons having a relative vector r12 or a center of
mass vector R, respectively. Their spherical averages will
be denoted by h(r12) and d(R), respectively. Besides, the
radial moment of order −1 of the single particle and the
intracule densities give the electron-nucleus attraction and
the electron-electron repulsion energy, respectively. Note
that the one body density is normalized to the number of
electrons and both the intracule and extracule densities
to the number of electron pairs in the atom. Atomic units
are used throughout.

2 Results

We have studied the ground 1s22s2–1S as well as the
highly excited states 1s2p3–5S and 1s2s2p2–5P of Li− and
the 1s22s2p2–4P, 1s22p3–4S and 1s2s2p3–6S metastable
states of Be−.

For the ground state of Li− we have used, in addi-
tion to the low–lying 1s22s2 configuration, the 1s22p2

one, to include the 2s–2p near degeneracy effect, and the
1s22s3s configuration. The weight of these last two config-
urations is of about 30% for this state. For the 1s2p3–5S
states we have used only one configuration whereas for the
1s2s2p2–5P term we have included in the expansion the
configurations 1s2s2p2, 1s3s2p2 and 1s2s2p3p. If the cor-
relation factor F is taken equal to 1, the use of three con-
figurations improves largely the energy obtained with only
one configuration. However, when the correlation factor F
is included the difference in the total energy obtained with
one and with three configurations is of about 1 mhartree.
For the 4P state of Be− we have used the following three
configurations, 1s22s2p2, 1s23s2p2 and 1s22s2p3p. The
weight of the later two is about 22%. For the 4S state we
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Table 1. Energy of the different states of the two ions studied here obtained in this work (VMC) as compared with the
non-correlated (NC) and others that we shall consider as exact. In parentheses we give the error in the last figure.

Li− Be−

1S 5P 5S 4P 4S 6S

NC −7.428232a −5.364274 −5.222489 −14.509028c −14.32752c −10.428833c

VMC −7.49909(2) −5.38329(1) −5.25355(1) −14.57160(2) −14.40106(2) −10.46624(2)
Exact −7.500758a −5.3865728b −5.2560969b −14.577877(36)d −14.406282(26)d

aReference [31], breference [11], creference [10], dreference [12].
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Fig. 1. One body radial density for the different states of the
ions of Li− and Be− studied here.

have mixed the 1s22p3 and the 1s22p23p configurations.
The weight of the second one is approximately 13%. Fi-
nally, for the 6S state we have considered only the 1s2s2p3

configuration. All the relative weights discussed here cor-
respond to the correlated basis set.

In Table 1 we show the energy of all these states as
compared with the non–correlated ones obtained either
within the Hartree–Fock framework for Be− as well as for
the ground state of Li−, or within the POEP method for
the two excited states of Li−. We also report the energy
obtained from extensive configuration interaction calcula-
tions [11,12,31], that we shall consider as exact. The wave
functions obtained here recover partially the total correla-
tion energy, providing similar results to those of [10]. For
the states of Li− the greatest difference between the re-
sults obtained here and the exact ones is of 3.5 mhartree
for 5P, while the smallest one is found for the ground state.
Thus the percentage of correlation energy recovered with
our wave functions goes from about 86% for the 5P state
(the term with the smallest correlation energy), to more
than 98% for the ground state. For the states of Be− the
difference between the VMC energy of this work and the
exact one is lower than 7 mhartree and the percentage of
correlation energy recovered is above than 90%. These re-
sults show the good performance of these relatively simple
trial wave functions.

The spatial arrangement of the electrons is studied in
terms of the one and two electron densities. The one body
density provides a direct information about the distribu-
tion of the electrons with respect to the nucleus. In Fig-
ure 1 we plot the radial single–particle density (4πr2ρ(r))
for the states considered here of Li− and Be−.

The electronic distribution near the nucleus is very
similar for the 5P and 5S excited states of Li− and differ-
ent to that of the ground state, that shows a higher charge
density in this region. At intermediate and large distances
the effects of the different coupling of the outermost elec-
trons become more apparent. Between the first minimum,
corresponding to the inter-shell separation, up to around
r = 4 au, the charge density of the excited states is larger
than in the ground state. The largest values in this region
correspond to the 5P term. Finally, at large distances all
the states considered here present a similar behavior, with
bigger values of the density in the ground state. In the case
of Be−, the 4P and 4S terms present similar values of the
density close to the nucleus, different to those of the 6S
term. This is due to the fact that the former two terms
have two 1s core electrons, whereas the latter has only
one. The differences between the 4P and 4S excited states
become relevant at intermediate distances, i.e. there where
the L shell is more important. In this region, the 6S term
presents the highest values of the charge density and it is
the one that decays faster at large distances.

In Figure 2 we plot both the intracule density and the
radial intracule density for the different states of the two
ions studied here. The intracule density starts from zero at
the coalescence point, r12 = 0, for the 5P and 5S terms of
Li− and for the 6S term of Be− due to the Pauli principle.
The radial intracule density shows one or two maxima,
in such a way that the terms with two 1s core electrons
present two maxima. In these cases, the first maximum
corresponds to the separation of the two 1s electrons, and
the second one to the other relative interparticle distances,
i.e. 1s–2s, 2s–2p and 2p–2p. The first maximum is dropped
out of this radial density in the 5P and 5S terms of Li−
and in the 6S term of Be−. This is also supported by the
following. If we define

Np(r12) = 4π

∫ r12

0

dss2h(s),

this function can be interpreted as the number of electron
pairs separated by distances lower or equal than r12. We
have found that Np = 1, i.e. only one electron pair, at the
following values: r12 ≈ 1.57, 2.43 and 2.51 for the 1S, 5P
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Fig. 2. Intracule density and radial intracule density for the different states of the two ions studied here. The intracule density
h(s) for the 5P and 5S states of Li− and for the 6S state of Be− are multiplied by ten.
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Fig. 3. Extracule density and radial extracule density for the different states of the two ions studied here. The extracule d(R)
for the 5P and 5S states of Li− and for the 6S state of Be− are multiplied by ten.

and 5S terms of Li−, respectively, and r12 ≈ 0.986, 0.988
and 1.46 for the 4P, 4S and 6S states of Be−, respectively.
These values show the role played by the 1s electrons in
the intracule density. Finally it is worth to point out that
the r12 value where Np = 2, 3, ... depends on the ion con-
sidered but they are nearly independent of the LS term.

In Figure 3 we plot both the extracule density and
the radial extracule density for the different states of the
two ions considered here. It is remarkable the nearly flat
region that the extracule density presents for low values
of the center of mass coordinate for the states in which all
the electron spin are parallel. The radial extracule density
shows a shell structure similar to the intracule density,

with two maxima for the case of two 1s electrons in the
more internal configuration and only one maximum for
the states with only one core electron.

Finally, to study how the addition of an extra electron
to a bound system to form a new state modifies both the
one and the two body densities, we plot in Figure 4 the
radial single–particle and both the radial intracule and ex-
tracule densities for the 1s22p3–4S state of the ion Be− and
its parent term 1s22p2–3P of the Be atom. The differences
between the radial densities of the anion and the neutral
atom are also plotted. These figures show that the addition
of one electron to the 3P state of the Be atom giving rise
to the 4S term of the Be− ion, does not significantly alter
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Fig. 4. Radial single particle, intracule, and extracule densities
for the 4S term of the ion Be− and its parent term, the 3P state
of the Be atom. The difference between the radial densities of
the anion and the neutral atom is also plotted.

the internal structure of the atom up to the beginning of
the L shell.

In Table 2 we report the value at the origin and some
radial moments of the the single–particle, intracule and
extracule densities of the different states of Li− and Be−
studied here. The values of these quantities are governed
by the behavior of the corresponding densities previously
studied. For Li−, the single particle density at the ori-
gin and the negative radial values are reduced in both
excited states with respect to the ground state. In par-
ticular, the 〈r−1〉 expectation value, proportional to the
electron-nucleus attraction energy is reduced by a factor
∼2/3. This is due to the different electronic configuration
in the ground state, with two electrons 1s, as compared
with the other states with only one 1s electron. The value
at the origin and the negative moments of the single par-
ticle density of both excited states are very similar, due to
the close resemblance of their radial densities near the nu-
cleus. The positive moments are related to the electronic
density at medium and large distances from the nucleus.
The average size of the system can be analyzed, for exam-

ple, in terms of the root mean square radius
√〈r2〉. The

results show that the less extended term is 5P, whereas
the 5S state has practically the same size as the ground
state.

For Be− the density at the origin is reduced in the 6S
term with respect to the others two states. This is due
again to the different electronic configuration for the core.
As it was the case for Li−, the two terms with the same
core present similar values for the negative radial moments
of the single particle density as well as for the value of the
density at the nucleus. The state 4P, the one with the
lowest energy, presents the highest value of the moment
of order −1. i.e. the strongest electron-nucleus attraction.
With respect to the average size, we find that the less
extended term is 6S.

At the middle part of Table 2 we show the value at the
origin and some radial moments of the intracule density
for the states studied here of Li− and Be−. It is worth
noting here that h(0) is zero, within the statistical error,
for both quintuplets in Li− and for the 6S term of Be−.
This is expected because of the Pauli principle such as it
has been pointed out previously. As it was the case of the
single particle energy, the negative radial moments of the
intracule density are similar for the 5P and 5S terms of
Li− and for the 4P and 4S terms of Be−. The average size
of the inter electronic distribution follows a similar trend
as that for the single–particle density. As it is apparent
from the data, the main effect of the Pauli principle takes
place at short distances.

In the bottom part of Table 2 we report the value at
the origin, d(0) and some radial moments of the extracule
density. It is remarkable the big differences between the
moments of negative order of the states with parallel spin
and those corresponding to the other terms. This is a con-
sequence of the nearly–flat shape of the extracule density
at low values of the variable R for the states with parallel
spin (see Fig. 3).

A systematic analysis of the angular correlations be-
tween the electrons can be done by using the angular cor-
relation factor τr, introduced by Kutzelnigg, Del Re, and
Berthier [32]

τr =
2

∑
i>j

〈ri · rj〉

(N − 1)
∑
i

〈r2
i 〉
· (6)

This quantity is bounded by [33] −(N − 1)−1 ≤ τr ≤ 1.
τr = 1 means perfect positive correlation and τr = 0
stands for either non-correlated variables in the statistical
sense or for independent variables. For atomic systems,
statistically non-correlated variables means that the posi-
tion vectors of any pair of particles are, on average, orthog-
onal, while independent variables means that the diagonal
term of the two body density matrix is the product of the
one-body distribution functions. These angular correlation
factor in both position and momentum spaces are reported
in Table 3. We also report in Table 3 some correlated mo-
mentum expectation values which are directly obtained in
the Monte Carlo calculation. In particular we show the
expectation values 〈p2〉 (twice the kinetic energy), 〈p2

12〉,〈P 2〉 and 〈p1 · p2〉. These two body expectation values
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Table 2. Value at the origin and some radial moments of the single–particle (top), the intracule (middle) and the extracule
(bottom) densities for the different states of the four and five electron atomic ions studied here. In parentheses we give the
statistical error in the last figure.

ρ(0) 〈r−2〉 〈r−1〉 〈r 〉 〈r2〉 〈r3〉
Li− 1S 13.81(4) 30.19(8) 5.8977(6) 11.718(2) 71.30(2) 573.1(4)
Li− 5P 8.86(3) 19.04(6) 4.1548(6) 11.7410(5) 57.726(8) 388.9(1)
Li− 5S 8.39(2) 18.23(5) 4.0475(5) 12.9592(6) 72.73(1) 554.5(2)
Be− 4P 34.7(1) 56.7(2) 8.5525(7) 12.478(1) 66.86(2) 532.9(4)
Be− 4S 34.06(7) 55.7(1) 8.4140(8) 14.135(2) 89.97(3) 848.7(6)
Be− 6S 21.1(2) 34.6(3) 6.2137(7) 10.5831(4) 34.785(4) 151.78(4)

h(0) 〈r−2
12 〉 〈r−1

12 〉 〈r12〉 〈r2
12〉 〈r3

12〉
Li− 1S 0.5466(4) 4.486(6) 2.6855(2) 31.029(4) 232.75(8) 2168(1)
Li− 5P 0.00001(5) 0.68646(4) 1.67489(4) 29.647(3) 190.45(2) 1513.8(4)
Li− 5S 0.00002(5) 0.66895(5) 1.61157(5) 31.942(2) 225.17(3) 1974.8(5)
Be− 4P 1.576(1) 9.56(1) 5.0279(2) 43.060(5) 281.77(9) 2456(2)
Be− 4S 1.532(2) 9.32(2) 4.8185(2) 48.271(6) 365.7(1) 3726(3)
Be− 6S 0.0001(2) 2.1857(1) 3.8844(1) 34.605(1) 151.91(2) 812.0(2)

d(0) 〈R−2〉 〈R−1〉 〈R 〉 〈R2〉 〈R3〉
Li− 1S 6.228(1) 20.83(4) 5.7265(4) 14.279(2) 48.76(2) 207.1(1)
Li− 5P 0.2203(4) 4.219(4) 3.8941(1) 13.1870(7) 38.975(6) 147.89(4)
Li− 5S 0.2370(1) 3.616(6) 3.4272(1) 15.4272(8) 52.801(7) 225.97(6)
Be− 4P 16.631(3) 43.54(5) 10.7696(5) 20.110(3) 63.28(2) 273.6(2)
Be− 4S 16.226(3) 41.78(5) 9.9966(5) 23.679(3) 88.52(3) 447.9(3)
Be− 6S 1.039(1) 13.44(2) 8.9518(3) 15.5755(7) 31.593(4) 80.14(2)

Table 3. Several two body position and momentum properties for the different states studied here. In parentheses we give the
statistical error in the last figure.

〈r1 · r2〉 τr 〈p2〉 〈p2
12〉 〈P 2〉 〈p1 · p2〉 τp

Li− 1S −9.425(4) −0.08813(4) 15.017(4) 44.44(1) 11.416(3) 0.3069(4) 0.01362(2)
Li− 5P −8.638(1) −0.09976(2) 10.813(3) 32.87(1) 8.001(3) −0.2160(3) −0.01332(2)
Li− 5S −3.492(2) −0.03201(2) 10.555(3) 32.21(1) 7.779(3) −0.274(3) −0.0173(2)
Be− 4P −7.166(2) −0.05359(3) 29.221(6) 116.42(2) 29.337(6) 0.2328(6) 0.00398(1)
Be− 4S −2.900(3) −0.01612(2) 28.873(6) 115.07(2) 28.978(6) 0.212(1) 0.00367(2)
Be− 6S −6.3854(7) −0.09178(1) 21.008(6) 85.61(3) 20.615(6) −0.787(4) −0.0187(1)

and 〈p2〉 are not linearly independent but they satisfy the
relations [25,27]

〈p1 · p2〉 = 〈P 2〉 − 1
4
〈p2

12〉 (7)

〈p2〉 =
2

N − 1

(
〈P 2〉 +

1
4
〈p2

12〉
)

(8)

where N is the electron number. In position space all the
states present negative spatial angular correlation. In mo-
mentum space the situation is different. We have found a
negative angular correlation for the terms with the highest
possible total spin value and positive in the other states
studied. Positive angular correlation in momentum space
indicate that the main contribution to the kinetic energy
comes from the center of mass movement of the electron
pairs whereas it is more important the inter electronic
movement if τp is negative (see Eqs. (7) and (8)). Finally
it is worth to point out that τp presents similar values for
those states with the same total spin value in both ions.

3 Conclusions

Explicitly correlated compact wave functions have been
obtained for some bound states of the negative ions Li−
and Be− within a VMC framework. Single or multi deter-
minant wave functions multiplied by a correlation factor
have been used. The Boys and Handy form of the cor-
relation factor with the parameterization of Schmidt and
Moskowitz has been employed. The free parameters have
been optimized by using an algorithm that minimized the
expectation value of the energy. The correlation energy re-
covered is greater than 90% for most of the cases studied.
Starting from these wave function the total, one and two
body properties as the single particle density, the intracule
and extracule densities and some of their radial moments
are reported here. A systematic analysis of these prop-
erties focusing on the analogies and differences between
the different states has been carried out. All the results
reported here have been obtained by means of the Varia-
tional Monte Carlo method.
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